Biomarkers for Drug Safety
(Really Biomarkers for Drug Toxicity)

Alastair J.J. Wood M.D.
Biomarker Definition

- A characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes or pharmacologic responses to a therapeutic intervention

 NIH Biomarkers Definitions Working Group, Clin Pharmacol Ther 2001;69:89-95
Holy Grail of Drug Toxicity Biomarker Development

u Preclinical
 l Biomarker elevation predicts clinical toxicity
 l Absence of elevation predicts future safety

u Clinical
 l Individual biomarker elevation predicts
 w Individual toxicity?
 w Population risk?
 w Often assumed to be the same but is not
 l Absence of elevation predicts future safety
Why Identify Drug Safety Signals Early?

- Inform decisions on future drug development
 - Go/No Go decision
 - Risk assessment
 - Risk mitigation
- Sensitivity/Specificity issues
 - False negatives
 - Future development costs wasted
 - False positives
 - Potentially successful drugs lost
Fall in NMEs Submitted to FDA
We Can Ill Afford Misleading Signals

Frantz, Nature Reviews Drug Discovery 3:379, 2004
Success Rates in All Phases of Drug Development

Toxicity Biomarkers
Sensitivity/Specificity Tradeoffs

- Setting the sensitivity too high at expense of specificity – too many false positives
 - Will reject many safe and potentially useful drugs

- Conversely increasing specificity may increase clinical safety failures
 - Too many false negatives
Toxicity Biomarkers
Sensitivity/Specificity Tradeoffs

- All drugs are not equal
 - Sensitivity/specificity tradeoff varies by indication

- Nasal allergy therapy vs. oncology cure
 - Different tolerance for
 - Failure to detect toxicity
 - Calling toxicity where no clinical toxicity would occur
Tolerance For False Positives?

- 50 preclinical biomarker safety assays
 - 1% random false positive in each assay
 - 50% of drugs would be wrongly rejected in preclinical screening
- Same issue with false negatives
 - Large number of compounds fail in clinical

- Would we define this as success?
- How would we know?
Safety Biomarkers
Linear Reasoning vs. Pattern Recognition

u QT prolongation—linear reasoning
 | Mechanism understood
 | Linked to TDP (actual toxicity)
 | Linked to hERG channel
 | Linked to “at risk” genotypes
 | Manipulation of risk factors linked to toxicity
 w Low Potassium
 w Increased plasma concentration
 w Even QT prolongation by drug linked to TDP
Safety Biomarkers
Linear Reasoning vs. Pattern Recognition

- “Positive Array” with no underlying hypothesis
 - What will our comfort level be?
 - How do we avoid just replicating the “last war”
 - Drug XXX did this so it must be bad because it was
 - Real question is will this predict toxicity in a different molecule?
 - How will we know if we abandon compounds?
 - In the absence of mechanism what level of specificity will we/should we tolerate?
Knowledge of Mechanisms Helpful

- Kinase inhibitors in oncology
 - Cardiac toxicity
 - Is it mechanism (cardiac kinase) based
 - Defining specific cardiac kinase linked to toxicity
 - Would allow prediction of toxicity
 - Develop molecules devoid of inhibition of cardiac enzyme.
The Better Our Understanding of Mechanism

- Better our ability to predict toxicity
- Better our ability to exclude it
- Best hope for improved productivity
- Biomarkers may be an intermediate stop
 - Same non-competitive structures could also jointly define mechanisms
Safety Biomarkers
Limitations

- Likely success is predicting increased incidence of events that are very rare in background population
 - Hepatotoxicity
 - Nephrotoxicity
 - Torsades
 - Repro Tox
Public health problem is increased incidence of events common in background population
- MI and COX-2 inhibitors
- 4X risk produces thousands of cases
- Not easy to detect
 - Against background
 - From spontaneous reports
 - Preclinically
Developing Safety Biomarkers
Our Challenge for Today

- How do we do it?
- How do we measure success?
 - Improved clinical drug safety?
 - More drugs killed early?
 - What if we are wrong (specificity/sensitivity)
 - How will we know?
 - Positives will not progress
 - Spawning a new industry is not the same as success
 - If it just decreases the number of available drugs
Developing Safety Biomarkers
Our Challenge for Today

- How do we validate safety markers?
 - Across drugs
 - Across companies
 - Prospectively (when no one takes a drug forward with a signal)
 - Retrospectively looking back from evidence of toxicity
 - Different when there is a “linear relationship” like QT
 - Different if we can understand mechanisms
 - In most cases we won’t have
 - Linear relationship or mechanism
Developing Safety Biomarkers
Our Challenge for Today

- How do we engage all the stakeholders?
- How do we share data pre/noncompetitively?
- How do we share/interpret data on drugs stopped early in development?
- How do we make drugs safer without needlessly killing effective drugs in early development?